
signaling pathways, not only during
differentiation of the nervous
system, but also in adult behavior,
at least in those neuronal pathways
leading to obesity and diabetes.
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Prey–Predator Communication:
For Your Sensors Only

Prey have evolved myriad strategies to escape predation. Ground
squirrels tailor their defensive signals to the predator at hand and use
infrared warning signals in response to heat-sensitive rattlesnakes.
Rachel A. Page

Predator–prey dynamics are
a fascinating world of arms races,
one-upmanship, and stunning
innovation. Predators evolve
sophisticated measures to detect
and locate prey; prey in turn
outmaneuver them with even more
sophisticated defense measures,
and so the arms race goes [1]. In
a recent study, Rundus et al. [2]
found that ground squirrels are able
to exploit the very sensory modality
rattlesnakes use to hunt them:
sensitivity to heat.

Rattlesnakes use infrared-
sensing pit organs to detect
warm-blooded prey. While ground
squirrels have evolved defensive
proteins that partially neutralize
snake venom [3], their young are
vulnerable until they too develop
the proteins. Thus, adult ground
squirrels go to considerable lengths
to defend their young from snakes.
If a snake is present they will harass
it by throwing sand or pebbles,
wagging their tails (‘tail flagging’),
approaching and sometimes even
biting the offending snake. These
behaviors are often effective and
snakes are deterred [4].

What was not known until now is
that, in response to snakes that are
heat-sensitive, ground squirrels
add an infrared component to their
tail-flagging display. In an elegant
set of experiments, Rundus et al. [2]
showed that rattlesnakes are more
deterred by a ground squirrel that
has a heated tail than to one that
does not. Thus, ground squirrels
have developed the ability to tailor
their defensive displays to the
sensory sensitivity of their
predators. Thermal signaling has
never been documented before. It
is all the more extraordinary to find
that ground squirrels are using this
modality because they almost
certainly cannot detect infrared
themselves.

Using a thermal imaging camera,
Rundus et al. [2] recorded ground
squirrel responses to infrared-
sensitive rattlesnakes and to
infrared-insensitive gopher snakes.
Ground squirrels responded to both
types of snake with tail-flagging
displays, but they added an infrared
component to the display in
response to rattlesnakes, whereas
their tails remained cool when
signaling togophersnakes (Figure1).
To quantify the rattlesnakes’
response to tail flagging, the authors
presented captive rattlesnakes with
a robotic ground squirrel. This robot,
built from a taxidermy mount of an
actual ground squirrel, could tail flag
both with and without heating its tail.
Rattlesnakes showed defensive
responses significantly more of the
time when the robotic tail was
heated, indicating that, indeed,
rattlesnakes perceive and are
deterred by the infrared component
of the display.

How well a communication
signal functions depends on its
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Figure 1. The temperature of ground squirrel tails in response to predator type.

Frames from a thermal imaging camera of a ground squirrel confronted with (A) a rattlesnake, and (B) a gopher snake. Yellows,
oranges and reds correspond to warmer temperatures, blues and violets correspond to cooler temperatures. (C) Ground squirrel
body temperatures in response to rattlesnakes (squares), gopher snakes (triangles), and two controls: other ground squirrels
(diamonds) and baseline (circles). Significant differences in temperatures are found only in the tail region; temperatures are warmest
in response to rattlesnakes. (Adapted with permission from [2]; copyright (2007) National Academy of Science, USA.)
Spindle Microtubules: Getting
Attached at Both Ends

A recent study describes a novel role for the centrosomal protein Cep57
in attaching spindle microtubules to both kinetochores and
centrosomes, suggesting similar mechanisms may be used for
generating these two distinct linkages in mitosis.

Jennifer G. DeLuca

In a eukaryotic cell, chromosome
segregation occurs on the mitotic
spindle, a dynamic array of
microtubules which requires the
function of numerous proteins at

centrosomes, kinetochores and
along spindle microtubules
(Figure 1A). Chromosomes must
attach to spindle microtubules via
their kinetochores and maintain
persistent linkages to these
microtubules throughout mitosis. A
production by a sender, how
effectively it travels through
a medium, and the sensory and
cognitive capabilities of the
receiver. While studies of animal
communication have traditionally
emphasized the role of the sender
and the medium in signal
transmission, until recently less
attention has been paid to the role
of the receiver [5].

The receiver’s sensory
capacities serve as filters for the
incoming signal. Signals that excite
the sensory systems of their
intended receivers should be
favoured by selection. Numerous
examples of signaling within
a species show this to be the case.
From fish to frogs to fiddler crabs,
studies of sexual selection
demonstrate that males that
produce signals matching females’
sensory sensitivity are most
successful in obtaining mates (for
example, [6–8], reviewed in [9]).
Rundus et al. [2] have shown that
the success of sensory specificity
extends to prey–predator
communication as well. Prey that
communicate to predators in the
modality they best perceive can
successfully deter attack.

The new study of Rundus et al. [2]
reminds us that, when studying
animal behavior, we must be careful
not to confine ourselves to the
senses that we ourselves can
perceive. In the case of ground
squirrels signaling to rattlesnakes,
the tail’s thermal warning is
undetectable to humans and to
other ground squirrels alike, but to
rattlesnake predators it serves as
a potent deterrent. The lesson
being, in signal evolution as well as
in our study thereof, it pays to be
aware of the perceptual world of
the receiver.
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