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Summary

Animals have multiple senses through which they detect

their surroundings and often integrate sensory information
across different modalities to generate perceptions [1, 2].

Animal communication, likewise, often consists of signals
containing stimuli processed by different senses [3–6]. Stim-

uli with different physical forms (i.e., from different sensory
modalities) travel at different speeds [7]. As a consequence,

multimodal stimuli simultaneously emitted at a source can
arrive at a receiver at different times. Such differences in

arrival time can provide unique information about the dis-
tance to the source [8, 9]. Male túngara frogs (Physalaemus

pustulosus) call from ponds to attract females and to repel

males. Production of the sound incidentally creates ripples
on the water surface, providing a multimodal cue [10].

We tested whether male frogs attend to distance-dependent
cues created by a calling rival and whether their response

depends on crossmodal comparisons. In a first experiment,
we showed distance-dependent changes in vocal behavior:

males responded more strongly with decreasing distance
to a mimicked rival. In a second experiment, we showed

that males can discriminate between relatively near and far
rivals by using a combination of unimodal cues, specifically

amplitude changes of sound and water waves, as well
as crossmodal differences in arrival time. Our data reveal

that animals can compare the arrival time of simultaneously
emitted multimodal cues to obtain information on relative

distance to a source. We speculate that communicative
benefits from crossmodal comparison may have been an

important driver of the evolution of elaborate multimodal
displays [11, 12].

Results

Males of the Neotropical túngara frog (Physalaemus pustulo-
sus) aggregate at night in shallow seasonal ponds [13–15].
Males produce a single whine followed by up to seven chucks
to attract females and defend their calling sites against other
males. During aggressive interactions, males either increase
their call rate (number of whines/s) and call complexity
*Correspondence: wouter.halfwerk@gmail.com
(number of chucks per whine) or fight with intruders that
approach within 5–10 cm [13, 16]. Calling creates an acoustic
signal but simultaneously induces surface waves, or ripples,
as a result of movements of the vocal sac and body wall
associated with calling [10]. These water ripples are known
to play a role in agonistic interactions between male frogs
[17, 18] and can be integrated with sound into a multimodal
signal [10]. Surface waves in shallow ponds propagate at a
speed about 1,000-fold slower than airborne sound waves
[7], thereby rapidly accumulating differences in arrival time
with increasing distance and providing the basis for crossmo-
dal distance cues (Figure 1).
We examined behavioral responses of male túngara frogs to

sound- and call-induced water ripples of a mimicked rival. We
constructed an experimental pool in which we placed a mesh
enclosure, transparent to airborne and waterborne vibrations,
which allowed us to situate focal males at different distances
from the playback source.

Experiment I: Distance-Dependent Impact of Ripples on

Receiver Response
We first tested male vocal responses to the call of a
mimicked rival male, broadcast with and without water rip-
ples, at varying distances. Males had a higher overall call
rate during sound with added ripples than during sound
alone (generalized linear mixed model [GLMM], effect of
ripples: n = 17, degrees of freedom [df] = 1, t-value = 6.02,
p < 0.001; Figure 2A). Vocal response to a simulated rival
decreased with increasing distance when ripples were added
(effect of distance2: t-value = 2.36, p = 0.02), but not when
calls were presented in isolation (Figure 2A). Importantly,
there was also an interaction effect between distance and
ripple treatment (ripples j distance2: t-value = 2.07, p =
0.041), suggesting that males attend to distance-dependent
cues associated with ripple propagation.
Adding ripples to the sound playback also increased overall

call complexity of the male’s vocal response (effect of ripples:
c2 = 10.48, p = 0.001; Figure 2B). Furthermore, males showed a
decrease in call complexity with increasing rival distances
(GLMM, effect of distance: df = 1, c2 = 16.02, p < 0.001), but
we did not find an interaction effect between ripple treatment
and rival distance (c2 = 0.63, p = 0.43).

Experiment II: Decoupling of Unimodal and

Multimodal Cues
Call rate of the male was highest in response to the play-
back of ripples plus sound at a distance of 15 cm and
lowest in response to the playback at 60 cm (Figure 2A).
Given these differences, we then positioned receiver males
15 cm from our playback source and varied three cues
that males could have used in the first experiment to
respond to a rival that was relatively far away: (1) sound
amplitude, (2) ripple height, and (3) difference in arrival
time between ripples and sound (hereafter referred to as
DAT; see also Figure 1C and Table 1). The three cue treat-
ments (all with a control and experimental condition) were
independently manipulated and presented to focal males
by a full factorial design. Only DAT requires crossmodal
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Figure 1. Crossmodal Comparison of Differ-

ences in Time of Arrival Provides Distance Infor-

mation

(A) Communication displays often involve syn-

chronized production of multimodal cues, such

as frogs producing sounds and water ripples

while calling. Inter- and intrasexual receivers

can rely on unique properties of these multi-

modal displays by assessing the differences in

time of arrival of the bimodal cue components.

(B) Schematic representation of two signal com-

ponents (e.g., sound and ripples) that propagate

through different mediums (e.g., air and water

surface, respectively). Sound and ripples are

simultaneously produced (difference in onset

time, or DOT = 0) at an average rate of 2 Hz

but arrive with time differences at the receiver

(difference in arrival time, or DAT) as a result

of different propagation speeds. Reception of

the DAT accumulates with distance and could

potentially be used by receivers for the assess-

ment of distance to the sender.

(C) Example of experimental manipulation to

mimic a sender that is farther away. A signal

that is produced nearby can mimic the DAT of

a sender farther away by manipulation of the

DOT.
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comparison and is therefore referred to as multimodal cue,
whereas the other two cues (sound amplitude and ripple
height) are referred to as unimodal cues.

Use of Unimodal and Multimodal Cues during
Rival Contests

Males decreased call rate when DAT increased, suggesting
that they perceived the rival male as relatively far away
(GLMM, effect of DAT: n = 16, df = 8, c = 8.09, p = 0.004; Fig-
ure 3A). Males also decreased call rate in response to
decreased ripple heights (effect of ripple height: c = 10.5,
p = 0.001), but not to decreased sound amplitude (effect of
sound amplitude: c = 0.18, p = 0.67). Male call complexity
was significantly reduced in response to decreased sound
amplitude (c = 3.88, p = 0.049; Figure 3B), showed a trend
in response to decreased ripple height (c = 3.66, p = 0.056),
and was not significantly affected by DAT (c = 1.06, p =
0.30). These latter results show that males do not adjust
call complexity in response to differences in arrival time be-
tween calls and ripples, which is consistent with the lack of
a significant interaction in the first experiment (Figure 2B).
We did not find any significant interactions between the three
treatments, which were subsequently removed from final
models.

Comparing Effect Sizes of Experiments I and II
We compared male call rates by using effect sizes from exper-
iments I and II and assessed whether vocal responses
matched on the basis of different cues. The response to a
relatively faraway rival (at 60 cm) was reduced by 9.5 calls/
min in comparison to the response to a relatively nearby rival
(15 cm). Males independently reduced call rate by 4.4 calls/
min when we mimicked DAT of a relatively near versus far
rival and by 4.6 calls/min when ripple
height was manipulated. When DAT
and ripple height were simultaneously
manipulated, call rate was reduced by
9.0 calls/min, suggesting that vocal response is based on
both cues.

Discussion

Multimodal signal components travel at speeds dictated by
the physics of their respective modalities. As a consequence,
differences in time of arrival between the multimodal compo-
nents accumulate with distance. We have shown that male
frogs can assess differences in time of arrival between ripple
and sound cues produced by calling rivals, a capacity that
requires crossmodal comparison. Furthermore, we have
shown that males use crossmodal comparisons to discrimi-
nate between near and far rivals and to respond appropriately.
Call rate is presumed to function as an aggressive response
in túngara frogs [16], and the reduction in call rate (associated
with increased rival distance) suggests that crossmodal
comparisons aid assessment of relative threat levels posed
by rivals at varying distances.
Most social animals have been shown to rely on environ-

mental cues to assess distance to competitors, a process
known as ranging [19–21]. However, many cue properties
used for ranging, e.g., signal intensity or frequency-dependent
signal attenuation [20–22], also change in response to environ-
mental variation, such as temperature, turbulence, and the
amount and size of clutter along the transmission line
[23–25]. Furthermore, cues such as signal intensity can vary
with physical properties or the motivational state of the
signaler [22, 26] and may therefore not provide reliable infor-
mation on distance. Speed of transmission ismore predictable
but is mostly useful when simultaneously produced cues
are compared across modalities. Because ripple onset is syn-
chronized with sound onset through production constraints,
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Figure 2. Experiment I: Vocal Responses of Male Frogs to Different

Rival Distances

(A) Male frogs showed an overall increase in call rate in response to a rival

when ripples were added to the playback of sound. Call rate decreased

with distance to the mimicked rival for the playback of ripple plus sound,

but not for the control playback of sound only. Males responded the most

to ripple playback at 15 cm and the least to playback at 60 cm.Males placed

inside the territorial range, which is defended in the field by chasing and

grabbing intruding males, showed lowered call rates and occasionally

stopped calling and released the air necessary for calling in response to

ripples. Error bars indicate the 95% confidence interval.

(B) Frogs showed decreased call complexity in response to increasing

distance between the focal male and mimicked rival. Playback of water

ripples increased call complexity but did not show a distance-dependent

effect. Error bars indicate SE. Response curves were created with effect

sizes and intercepts from significant model estimates. All data points are

arbitrarily shifted to the left or right for clarification.

Table 1. Distance-Dependent Cue Estimates and Manipulations

Cue Type

Value at

7.5 cm

Value at

15 cm

Value at

30 cm

Value at

60 cm

Change between

15 and 60 cm

Sound amplitude 89 86 82 80 26 dB

Ripple height 200 mm 100 mm 50 mm 25 mm 275 mm

DAT 0.25 s 0.5 s 1.0 s 2.0 s +1.5 s

Relative-Distance Assessment by Crossmodal Cues
3

Please cite this article in press as: Halfwerk et al., Crossmodal Comparisons of Signal Components Allow for Relative-Distance
Assessment, Current Biology (2014), http://dx.doi.org/10.1016/j.cub.2014.05.068
crossmodal comparison of their difference in time of arrival
can thus provide additional information on rival distance.

Our data do not provide insights on the accuracy with which
male frogs assess rival distances or whether frogs use cate-
gorical or continuous distance perception.
Examining the type and level of accuracy of the distance
perception in túngara frogs would require experimental pre-
sentation of a large range of ripple-sound time intervals. We
have shown, however, that túngara frogs discriminate be-
tween rivals that are relatively near or far away. Such rela-
tive-distance assessment is likely to be useful because vocal
competition in lek-breeding frogs is often intense, and males
risk losing calling territories to rivals [13]. A critical task for
males, therefore, is to discriminate among rivals that are rela-
tively far away or encroaching upon their territory.

A Multimodal Cocktail Party

Effective communication requires receivers to assign signal
components to the same or different sources, a process
known as perceptual binding [27, 28]. Our data show that
such processes can span multiple sensory modalities and
thus require crossmodal comparison of components that
differ in spatial and temporal cues [29, 30]. The perception
of multimodal signal components with different times of
arrival may be especially challenging when many signalers
display at the same time and place, such as frogs calling
from choruses or birds singing at dawn [31]. The number of
male túngara frogs that call in the same puddle can vary
greatly, ranging from just one to several hundred, according
to time and place [13]. For crossmodal comparison to be
possible, males would thus often have to be able to discrim-
inate between males. To do so, males could rely on other
spatial cues, such as directionality, to perceptually group
different signal components or synchrony in arrival times
between ripples and sound. Other important factors involve
the delay at which ripples arrive at the receiver. At large
distances, ripples of a first call may arrive after the sound
produced during a second call. Under these conditions,
discrimination of very near or very far rivals would most likely
require additional cues, such as intensity- or distance-depen-
dent modulation of the ripple form [32]. Finally, males have to
carry out such complex perceptual tasks among a myriad of
other sensory cues, such as ripples produced by approach-
ing females, rain, or wind [18, 32, 33].

Conclusion

Animals have to track the location of their social competitors to
allow for effective defense of resources, such as food, shelter,
or mates [1, 26]. We have shown that frogs are able to assess
the differences in transmission speeds between modalities
and that they can use the obtained information to assess rela-
tive rival distance and presumed competitive threat. Emergent
properties that only arise when signal components are com-
bined across sensory modalities may provide communicative
benefits. Such benefits may help explain why communication
in the animal kingdom has evolved elaborate and complex
multimodal displays [11], despite the intrinsic costs of having
to process information in multiple perceptual systems [34]
and risks associated with increased eavesdropping by preda-
tors and parasites [10, 35].
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Figure 3. Experiment II: Vocal Responses of Male Frogs to Different Cue

Components of a Nearby and Faraway Rival

(A) Male túngara frogs adjusted call rate in response to manipulation of

onset times between sound and ripples produced by a mimicked rival

(DAT, late = ripple playback was delayed in comparison to sound onset).

Comparison of time of arrival required processing of cues inmultiple modal-

ities (multimodal cue). Males also adjusted call rate in response to altered

ripple height (low = lowered ripple height at playback site), but not in

response to changes in sound amplitude. Error bars indicate the 95% con-

fidence interval.

(B) Male frogs adjusted call complexity in response to changes in unimodal

cues, namely altered sound amplitude (low = lowered sound level at

playback site) and possibly ripple height. Error bars indicate SE. xp < 0.10,

*p < 0.05, and **p < 0.01.
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Experimental Procedures

We conducted the experiments in November 2012 at the Smithsonian Trop-

ical Research Institute (STRI) laboratory in Gamboa. We collected calling

male túngara frogs 1–3 hr after sunset, toe clipped them for individual recog-

nition after the experiment, and released themback to the field. Additionally,

we recorded calling frogs between March and April 2014 in a laboratory at

The University of Texas at Austin (UTA). All research reported here complied

with IACUC protocols from the STRI and UTA. We obtained all required per-

mits from the Government of Panama.

At STRI, we tested frogs in a pool (80 3 34 3 4 cm) filled with 4.5 liters of

rainwater in a hemianechoic chamber. We placed a loudspeaker (Nanosat

5.0 connected to a NAD C316BEE amplifier) at the short side of the pool

and attached a small metal tube to the pool’s side to create ripples by

blowing air on the water surface. We positioned the metal tube in front of

the speaker 11 mm from the surface and 10 mm from the side of the pool.

The tube was connected to a motor-driven pumping system that pushed

20 ml of air back and forth (this pump system was previously used to drive

vocal sac inflation of a robotic frog; see Taylor et al. [36] for the design). Both

the loudspeaker and the pumping system were driven by a desktop com-

puter outside the test chamber.

We used a synthetic call consisting of a whine plus one chuck played at

0.5 calls/s and 82 dB sound pressure level (SPL; 20 mPa at 50 cm, measured

with Extech SPL meter type 407764, set to C-weighted, fast, and max). The
pumping systemproduced 5–30Hzwater waves that traveled at amaximum

speed of 30 cm/s (as measured from video). We set ripple height at the

source to 2 mm and estimated the height at different distances by using

attenuation levels (at 20Hz) provided by Lang [37].We checked ripple height

close to the source by holding fine-grain sand paper (which has low capillary

action) perpendicular to the water surface and by measuring the water line

with a digital caliper before and after ripple playback. Properties of ripple

stimuli were based on data from a similarly sized frog species [17]. At

UTA, we recorded water waves of two male túngara frogs in a 1 3 1 m

tank filled with 20 liters of water at a distance of 15 cm. Ripples were

recorded with a laser Doppler vibrometer (LDV; Polytec OFV-534) and a

controller (Polytec OFV-500, set to 5 mm/s/volts). The two males produced

waves with peak heights between 50 and 120 mm. Additionally, we

measured our setup with the LDV. Our pumping system generated waves

with peak heights of 60–150 mm at a distance of 15 cm. Both the male frogs

and the machine produced waves with a peak amplitude of 6 Hz.

We conducted two experiments to test whether the response of male

túngara frogs to a mimicked rival changes with distance and whether this

change depends on unimodal and/or multimodal cues derived from ripples

and sound. In the first experiment, males were exposed for 1 min to a unim-

odal treatment (sound playback accompanied by blowing air outside the

pool) or a multimodal treatment (simultaneous sound plus ripple playback

within the pool). Males were placed in the pool and constrained by a

mesh wire cage (20 3 13 cm; mesh 6 3 6 mm) with a transparent plastic

top, and stimuli were broadcast to them from varying distances (7.5, 15,

30, or 60 cm between the speaker and center of the cage). Prior to each

experiment, males were stimulated to call with a low-amplitude 5 min play-

back of a natural frog chorus. Males were stimulated with chorus playback

in between the 1 min trials until they started calling. The order of the trials

was randomized. Trials with no acoustic response of the vocal male were

repeated once.

We calculated changes between different distances in three different

cues accessible to males: sound amplitude, ripple height, and DAT (see Ta-

ble 1). We used these measurements to design a second experiment in

which we broadcast stimuli from a distance of 15 cm to a focal male and

altered sound amplitude, ripple height, and DAT as if a rival were 60 cm

away. We thus delayed ripple onset times by 1.5 s to mimic DAT at 60 cm

distance (see also Figure 1C). We altered ripple height by positioning the

tube 18 mm from the water surface (as opposed to the original 11 mm),

decreasing wave height by 300 mm at the source, which corresponded to

a similar estimated change ofw75 mmbetween 15 and 60 cm. Sound ampli-

tude was lowered by 6 dB, the change in amplitude measured with the SPL

meter. Trials lasted 1 min with a 30 s silent period in between, and the order

of trials was randomized.

We recorded males with an infrared-sensitive camera (Everfocus, model

EHD500) attached to a desktop computer and an omnidirectional micro-

phone (Sennheiser ME62) attached to a Marantz recorder (PMD660, sample

rate 44.1 kHz). We quantified the number of calls and the mean number of

chucks produced throughout the 1 min trials to calculate call rate and call

complexity (both of which are known to reflect the level of motivation and

aggressive response [16]).

Response measures were analyzed with GLMMs in R [38]. Call-

complexity models were analyzed with an identity link function with normal

error distribution (in the package lme4) and with call rate as a fixed effect to

control for any covariance between the two response variables. Likewise,

call-rate models included call complexity as a fixed factor and were

analyzed with an identity link function with a Gamma error distribution

(with Penalized Quasi-Likelihood in the package MASS) or a normal error

distribution depending on model fit. Model fit was assessed with Akaike in-

formation criterion scores and quantile-quantile plots. For experiment I,

fixed effects included ripple playback (yes or no) and distance or distance

squared depending on model fit. For experiment II, fixed effects included

sound level (control versus low), ripple height (control versus low), and rip-

ple timing (control versus delayed). Interactions among fixed effects were

added to all models and removed from final models when not significant.

We used likelihood-ratio tests or Wald statistics to test for the significance

of fixed effects. All models included male ID and playback order as random

effects. We discarded all trials in which males did not call back, and we only

analyzed males that reliably called in at least five out of eight trials of an

experiment. The 95% confidence intervals shown in the graphs were calcu-

lated withMarkov chain Monte Carlo simulations (n = 10,000) in the package

LanguageR.
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13. Ryan, M.J. (1985). The Túngara Frog: A Study in Sexual Selection and

Communication (Chicago: University Of Chicago Press).

14. Rand, A.S., and Ryan, M.J. (1981). The adaptive significance of a

complex vocal repertoire in a neotropical frog. Z. Tierpsychol. 57,

209–214.

15. Ryan, M.J. (1980). Female mate choice in a neotropical frog. Science

209, 523–525.

16. Bernal, X.E., Akre, K.L., Baugh, A.T., Rand, A.S., and Ryan, M.J. (2009).

Female and male behavioral response to advertisement calls of graded
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