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All animals have defenses against predators, but assessing the effectiveness of such traits is challenging. Neotropical
katydids (Orthoptera: Tettigoniidae) are an abundant, ubiquitous, and diverse group of large insects eaten by a variety of
predators, including substrate-gleaning bats. Gleaning bats capture food from surfaces and usually use prey-generated
sounds to detect and locate prey. A number of Neotropical katydid signaling traits, such as the emission of ultrasonic fre-
quencies, substrate vibration communication, infrequent calling, and ultrasound-evoked song cessation are thought to
have evolved as defenses against substrate-gleaning bats. We collected insect remains from hairy big-eared bat
(Micronycteris hirsuta) roosts in Panama. We identified insect remains to order, species, or genus and quantified the pro-
portion of prey with defenses against predatory bats based on defenses described in the literature. Most remains were
from katydids and half of those were from species with documented defenses against substrate-gleaning bats. Many
culled remains were from insects that do not emit mate-calling songs (e.g. beetles, dragonflies, cockroaches, and female
katydids), indicating that eavesdropping on prey signals is not the only prey-finding strategy used by this bat. Our results
show that substrate-gleaning bats can occasionally overcome katydid defenses.
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Introduction

Predation is one of the strongest agents of natural selec-
tion [1], and in response, prey has evolved a spectacular
diversity of anti-predator defenses [2]; however, the effi-
cacy of prey defenses is difficult to quantify in nature. In
the Neotropics, katydids (Orthoptera: Tettigoniidae) are
an abundant, ubiquitous, and diverse group of large
insects that are eaten by a variety of predators including
bats, monkeys, rodents, birds, lizards, and amphibians
[3,4]. Katydids exhibit an assortment of morphological
and behavioral traits considered to be anti-predator
defenses [5].

Katydid morphological defenses include crypsis,
mimicry, chemical defenses, spines, and a strong bite.
Many katydids are visually cryptic, having broad green
wings to blend in with vegetation, or other forms of col-
oration to blend in with bark or lichen. Likewise, there
are a number of spectacular forms of mimicry found in
katydids, such as wasp (Scaphura spp. and Aganacris
spp.) and leaf (Mimetica spp., Aegimia spp., Pycnopalpa
bicordata) mimics [6]. Some species have long, sharp

spines on their legs or thorax (e.g. Steirodon spp.,
Figure 1) and a strong bite owing to their large
mandibles (e.g. Copiphora spp.). Behavioral defenses
include well-hidden daytime roosts [3,5], reduced activ-
ity during bright phases of the moon [7], singing from
protected perches [8], and changes in acoustic behavior
[4]. Male katydids use their wings to produce calling
songs that attract females, and have acoustic defenses
such as song cessation at the approach of a potential
predator and the production of loud sounds when
touched that might startle a predator [4]; however, the
efficacy of these defenses in the wild remains unknown.

In the Neotropics, substrate-gleaning bats capture
prey from surfaces and are known to exert top-down
control on insect populations [9,10]. In addition, many
gleaning bats are significant predators of katydids specif-
ically [8,11–15, this study]. Many substrate-gleaning bats
listen to the mate-calling songs of male katydids to
detect and locate them as prey [8,16,17]. Thus, some
acoustic characteristics of Neotropical katydid songs are
believed to be specific adaptations against gleaning bat
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predation [3]. For example, sporadic/infrequent calling
[8,18,19], the emission of high ultrasonic frequencies
[20], and substrate vibration communication [8,20,21]
have all been proposed as defensive forms of communi-
cation to evade detection by eavesdropping bats. Katy-
dids have ultrasound-sensitive ears and some will cease
singing in response to ultrasonic pulses and bat echolo-
cation calls [22–25]. Cessation of singing can effectively
thwart the gleaning attacks of temperate northern long-
eared bats, Myotis septentrionalis [26], but the efficacy
of such an acoustic defense has not been tested against
Neotropical gleaning bats. For example, the Neotropical
common big-eared bat Micronycteris microtis, a con-
gener of our study species, uses biosonar to locate silent,
motionless arthropods resting on leaf surfaces [27], sug-
gesting that song cessation alone will not always prevent
the predatory attacks of substrate-gleaning bats.

The goal of this study was to identify the katydid
species eaten by the hairy big-eared bat M. hirsuta, a
major gleaning bat predator, and to assess the proportion
of katydid species with described anti-bat defenses in the
diet. Previous studies have shown that M. hirsuta eats
many katydids ([11]: 25% by number, [28]: 41% by
number, 61.5% by weight); however, the relative number
and sex of all katydid prey have never been reported.
Detailed data about the dietary composition of bat preda-
tors can help address hypotheses about the efficacy of
presumed katydid defenses.

Methods

The study was conducted at the Smithsonian Tropical
Research Institute (STRI) field station on Barro Colorado
Island (BCI) in Panama (9°10′ N, 79°51′ W). The 15.6
km2 island is covered with moist, semi-deciduous tropi-
cal forest composed of both young and old stands (90–
600 years old; [29]).

From November 2001 to January 2003, we collected
arthropod remains from three hollow trees used as roosts
by M. hirsuta. Bats were caught and identified to species

when they emerged from the roost at night. We filmed
the inside of one roost to confirm that the bats inside
were responsible for dropping arthropod remains at
night. This also demonstrated that bats frequently
returned to the same roost to consume insects throughout
the foraging period.

To collect culled arthropod parts, a plastic sheet was
suspended off the ground inside the hollow tree roost to
keep the prey remains dry and prevent them from being
washed away by rainwater. From roost 1, collections
were made 2–14 times/month covering all seasons except
April and May (63 collections). Remains were also col-
lected from two other M. hirsuta roosts (roost 2 collec-
tion dates: 27 September 2002, 21 November 2002 and
5 December 2002; roost 3 collection date: 29 November
2002). Cockroaches and ants were observed removing
bat feces and, more rarely, insect remains, thus our sam-
ples likely underestimate the total number of prey items
brought back to bat roosts. However, the purely chiti-
nous remains that are important items for taxonomic
classification, such as arthropod wings, legs, and oviposi-
tors, were seldom removed.

Most insect parts were identified to order, and in case
of katydids to the level of family, subfamily, genus, and
species whenever possible using keys and information
from [4,30–32]. For all insect remains, we report the
total number of body parts found as a measure of the
maximum number of individuals that were captured for
each taxonomic group. For katydids, we additionally
examined forewings to classify them as male (having
characteristic sound producing structures) or female
(lacking these structures). Some wings could not be clas-
sified in this way because they were missing the area of
the wing with sound-producing structures and these were
included as individuals of unknown sex in the count. We
also identified each forewing as a left or right wing. By
matching the left and right wings of the same sex, we
were able to calculate the minimum number of individual
katydids at each roost.

We conducted a literature search to document
defenses of Neotropical katydids believed to be effective
against predatory bats. These defenses were noted for
all species of katydid from Panama and are reported
here for those species found as remains in bat roosts
(Table 1). A number of defenses are common to all
Neotropical katydids and are not listed in Table 1:
regurgitation of crop fluid (thought to be distasteful to
predators; [3,5]), holding tightly to a substrate when
grabbed [3], kicking [5], and autotomy of the hind legs
[5]. Only defenses that vary by katydid species were
documented, including large mandibles with a strong
bite, large cuticular spines, defensive startle sounds,
calling from protected perches, infrequent signaling,
production of vibratory tremulation signals, and calling
song cessation.

Figure 1. Lateral view of Steirodon stalii showing thoracic
spines as thick protuberances.
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Table 1. Minimum number of individual katydids represented in remains collected from a Micronycteris hirsuta roost, and
previously described anti-predator defenses specific to bats for each katydid species [sources in brackets].

Family and
subfamily Species

N
total

N
male

N
female

N
unknown
sex Anti-predator defenses specific to bats

Tettigoniidae All 784 147 261 376
Conocephalinae Copiphora

brevirostris
23 9 6 8 Infrequent calling (< 1 call / min; [28]), communicates

with tremulation signals [20,28], large mandibles and a
strong bite [3], stops singing in response to bat
echolocation calls ([26])

Erioloides
longipennis

5 0 0 5 Unknown

Erioloides sp. 2 0 0 2 Unknown
Neoconocephalus
affinis

1 0 0 1 Calls continuously from grassy areas where gleaning
bats do not hunt [8]; does not stop singing in response
to gleaning bat echolocation calls [24]

Subria sylvestris 2 0 0 2 Unknown
Unknown species 20 2 1 17

Phaneropterinae Anapolisia
colossea

2 1 1 0 Unknown

Anaulacomera sp. 15 3 4 8 Unknown
Ectemna
dumicola

2 0 1 1 Unknown

Hyperphrona
irregularis

9 0 1 8 Unknown

Hyperphrona
trimaculata

3 0 0 3 Unknown

Itarissa sp. 4 1 0 3 Unknown
Lamprophyllum
bugabae

2 0 1 1 Stops singing in response to bat echolocation calls (ter
Hofstede, unpubl. data)

Lamprophyllum
micans

3 0 3 0 Unknown

Lamprophyllum
sp.

1 0 0 1 Unknown

Microcentrum sp. 2 1 1 0 Unknown
Orophus
tessellatus

5 0 1 4 Unknown

Phylloptera
dimidiata

2 0 0 2 Unknown

Phylloptera festae 2 0 1 1 Unknown
Steirodon stalii 1 0 0 1 Dull but thick spines on thorax, sharp spines on hind

legs, kicks hind legs when touched [3]
Viadana sp. 1 0 0 1 Unknown
Unknown species 22 3 1 18

Pseudophyllinae Acanthodis
curvidens

10 0 0 10 Infrequent calling (< 1 call / min; [28]), communicates
with tremulation signals, large mandibles and a strong
bite, kicks with spiny legs, anecdotally noted that the
males continue to sing in the presence of bats; produces
startling sound when touched [3]

Balboana tibialis 5 2 1 2 Regular calling (approx. 4–5 calls / min; [24,28]),
communicates with tremulation signals [3], stops calling
in response to bat echolocation calls [24].

Bliastes
punctifrons

18 6 6 6 Unknown

Bliastes sp. 5 0 0 5 Unknown
Brachyauchenus
festae

1 0 0 1 Unknown

Cocconotus
wheeleri

7 0 0 7 Regular calling (approx. 1 call / min), communicates
with tremulation signals, anecdotally noted that the
males continue to sing in the presence of bat-like sounds
[28].

Cocconotus sp. 16 4 3 9 Unknown

(Continued)
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Results

At three M. hirsuta roosts, we found a total of 1,931
culled arthropod parts, which were mostly insect wings,
ovipositors, and legs (Figure 2). Out of all the remains,
109 were Blattodea (6%), 296 were Coleoptera (15%),
1,443 were Orthoptera (75%), 25 were Odonata (1%),
and 58 could not be identified to order (3%). Of the
Orthoptera, 72 were from the family Gryllidae (crickets),
1,341 were from the family Tettigoniidae (katydids), and
30 could not be identified to family. Therefore, by far
the most abundant group of the insect remains were the
katydids, comprising 69% of all remains at the roosts.

Based on wing morphology, we calculated the mini-
mum number of katydid individuals as 784 (Table 1; see
methods). In agreement with Belwood [28], the majority
of katydids eaten by M. hirsuta were from the subfamily
Pseudophyllinae (655, or 83% of katydids), with fewer
individuals from the subfamilies Phaneropterinae (76,
10%) and Conocephalinae (53, 7%). More than half of
the katydids (486, 62%) could be identified to genus or
species (Table 1). Six identified genera made up 56% of

all katydid individuals collected from bat roosts: Docido-
cercus, Xestoptera, Idiarthron, Copiphora, Melanonotus,
and Cocconotus. With the exception of Copiphora, these
are all genera from the subfamily Pseudophyllinae.

Based on data from Orthoptera Species File Online
[32], there are approximately 130 katydid species in
Panama. We found literature supporting defensive behav-
ior for 38 of these species. For the katydid remains
found in the bat roosts, we were able to classify katydids
into 42 species or species groups, 12 of which had docu-
mented defensive behavior against bats (Table 1).

Of the identified katydids, roughly 50% (390/784)
came from 14 species with documented anti-predator
defenses (Table 1). Of these 14 species, two possess
large mandibles with a strong bite, two have prominent
cuticular spines, three produce startle sounds when
touched, two sing from protected perches, five sing spo-
radically, nine use tremulations for substrate-borne vibra-
tory communication, and four exhibit song cessation in
response to playbacks of bat echolocation calls. We
could identify the sex of the katydids for 52% of the

Table 1. (Continued).

Family and
subfamily Species

N
total

N
male

N
female

N
unknown
sex Anti-predator defenses specific to bats

Docidocercus sp. 163 28 70 65 Regular calling (5–6 calls / min; [24, 28]),
communicates with tremulation signals [28], reduced
activity during bright moonlight phases [7], does not
stop calling in response to gleaning bat echolocation
calls [24].

Idiarthron
incurvum

20 8 10 2 Unknown

Idiarthron majus 3 0 0 3 Infrequent calling (< 1 call / min), communicate with
tremulation signals [28]

Idiarthron sp. 25 0 0 25 Unknown
Ischnomela
gracilis

8 0 1 7 Frequent caller (30–40 calls / min), stops calling in
response to gleaning bat echolocation calls [24].

Ischnomela
pulchripennis

2 0 2 0 Has a continuous calling song, but calls from a spiny
bromeliad for protection [28]

Melanonotus
bradleyi

27 5 10 12 Infrequent calling, communicates with tremulation
signals [8]

Melanonotus sp. 28 5 9 14 Unknown
Mimetica incisa 7 1 0 6 Leaf mimic [4]
Mimetica
viridifolia

4 0 0 4 Leaf mimic [4]

Mimetica sp. 1 0 0 1 Leaf mimic [4]
Parascopioricus
lancifolius

11 1 4 6 Unknown

Pristonotus
tuberosus

8 0 1 7 Infrequent calling (ca. 1 call / min), communicates with
tremulation signals, males produce a startling sound
when touched [28]

Thamnobates
subfalcata

6 1 2 3 Unknown

Xestoptera cornea 130 64 53 13 Regular calling (approx. 1 call / min), communicates
with tremulation signals, males produce a startling sound
when touched [28]

Unknown species 150 2 67 81
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individuals (408/784). Of those for which the sex could
be identified, 36% were males and 64% were females.
Similar percentages of males and females were also
found for individual species with large sample sizes (e.g.
Docidocercus sp. and Xestoptera cornea; Table 1).

Discussion

Our results show that the effectiveness of many proposed
defenses of katydids against bats may not be as effective
as originally suggested in the literature. Given the high
proportion of female katydids and silent prey in the
remains, our results also suggest that M. hirsuta use sen-
sory cues other than prey-generated acoustic signals to
find their prey. Although we cannot quantify the number
of prey taken relative to their availability or the reduc-
tion in predation provided by specific antipredator
defenses, our data nevertheless show that tropical sub-
strate-gleaning bats at least occasionally overcome katy-
did antipredator defenses. The detailed level of prey
identification in our study provides an opportunity to
assess specific predator-prey patterns and the prevalence

of katydids with particular defenses in the diet of glean-
ing bats, something that is not possible when the identifi-
cation of prey remains is limited to the level of order or
family.

When searching the literature for examples of katy-
did defenses against bats, we considered both physical
defenses (such as large mandibles, chemical defenses,
and large spines), and behavioral defenses (such as
acoustic startle sounds, calling from protected perches,
infrequent calling, vibratory tremulation signals, and
song cessation in response to bat echolocation calls).
The presence among the prey remains of two katydid
species (A. curvidens and C. brevirostris) with large
mandibles and a strong bite suggests that biting does not
guarantee safety from substrate-gleaning bats, perhaps
because many gleaners disable prey by biting the back
of the katydid’s thorax, thus effectively evading its
mandibles [28]. Chemical defenses are not well docu-
mented in katydids, but species in the genus Vestria are
believed to produce a chemical deterrent when they are
disturbed and it appears to be distasteful to monkeys [5].
No individuals of this genus were found in katydid
remains at M. hirsuta roosts.

The presence of Steirodon stalii (Figure 1) in prey
remains at bat roosts demonstrates that a large body size
and the presence of thoracic spines do not make katydids
impervious to gleaning bat predation. In a captive feed-
ing study, M. hirsuta successfully caught and ate large
katydids of the genus Steirodon (wings ca. 0.1 m, body
ca. 0.065 m, weight ca. 4 g, compared to the 14 g
M. hirsuta; [33,34]). However, we also noted that none
of the katydids from Panama with exceptionally sharp
and long spines (Steirodon careovirgulatum, Markia hys-
trix, Stilpnochlora acanthonotum, Panacanthus spinosus;
[4]) were found in prey remains, suggesting that long,
sharp spines could potentially deter bat predation. When
observed within a flight cage, the gleaning bats Trachops
cirrhosus, Tonatia saurophila, Lophostoma silvicolum,
M. microtis, and M. hirsuta often subdue heavily
armored katydids, but only after a considerable struggle
and the bats occasionally end up with holes in their
flight membranes (R. A. Page, pers. obs.). Interestingly,
many gleaning bats that we have captured in mistnets on
BCI have scars and holes in their wing and tail mem-
branes, although these injuries can have many different
causes.

Katydid species with known behavioral defenses
were also found in the roost remains. Three katydid spe-
cies (Acanthodis curvidens, Pristonotus tuberosus, and
Xestoptera cornea), including one of the most commonly
found species in the remains, are known to emit very
loud sounds when grabbed by humans. These sounds are
thought to function to startle predators [5]; however,
whether the attack of a gleaning bat would trigger this
behavior is unknown.

Figure 2. Sample of culled katydid remains with identification
numbers collected from a single Micronycteris hirsuta roost on
one day. B: Blattodea wings, C: Coleoptera wings, T: Tettigoniidae
(katydid) forewings, HW: hindwings, L: legs, O: ovipositors.
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Much of the research on the interactions between
katydids and substrate-gleaning bats has focused on the
acoustic defenses of male katydids (e.g. use of sporadic/
intermittent song). Micronycteris hirsuta are known to be
attracted to prey-generated sounds like katydid mate-call-
ing song [8,35] and will glean singing katydids while
ignoring silent ones in captivity [35]. Some studies have
shown that low duty cycle calls (duty cycle = call dura-
tion / signal period) or signaling with a low repetition
rate reduces the probability of a predatory response by
gleaning bats compared to high duty cycle calls or call-
ing at a high repetition rate [8,26]. Many low duty cycle
katydid species, however, were present in prey remains
found at M. hirsuta roosts. Neotropical katydids with
high duty cycles that sing continuously tend to call from
restricted locations generally inaccessible to gleaning
bats, such as thorny plants (I. pulchripennis) or tall
grasses (N. affinis). Although we found remains of these
two species in the bat cullings, they were either female
or the sex could not be determined, so singing from pro-
tected locations could also be effective against gleaning
bats. Different species of gleaning bats might exhibit dif-
ferential preferences for exploiting prey-generated signals
and thus exert different degrees of selection pressure on
katydid sensory-based defenses [16,17]. In addition to
passive acoustic defenses, such as low calling rates and
calling from inaccessible locations, most katydids have
acute ultrasonic hearing which allows them to detect the
echolocation calls of passing bats and cease calling when
they are in danger of an attack. Some katydids use this
strategy, but others do not [22–24].

Perhaps the most striking result of our study is that
silent female katydids were more commonly represented
in the remains found in M. hirsuta roosts than male katy-
dids that sing. We also found species of silent insects
that are not known to emit acoustic mate-calling signals,
including dragonflies, cockroaches, and beetles. The
presence of many silent prey species and katydid species
with acoustic-based defenses against gleaning bat preda-
tion suggest that eavesdropping on insect acoustic signals
cannot be the only strategy used by M. hirsuta to find
prey. Alternative strategies include eavesdropping on
other kinds of incidental prey sounds, using echolocation
to locate silent and motionless prey on vegetation, and
catching prey in flight, also called aerial-hawking.

Several bat species are known to use incidental
noises generated by insects to detect and locate them as
prey, such as wing beat or flight sounds [36], landing
and crawling sounds [37] and rustling noises [38,39].
Perhaps the general activity level of different prey spe-
cies, including exposure time moving on various sub-
strates, is an important risk factor governing gleaning bat
predation. For example, during the day the katydid
D. gigliotosi hides in plants on the forest floor and each
night males make a long journey up into the canopy to

sing and attract females [40], potentially producing a
number of incidental locomotory noises along the way.
A tracking study of Phyllophilla ingens, a medium-sized
katydid common to our study area, revealed much higher
levels of activity during the day than anticipated.
Although the diurnal altitudinal movements of P. ingens
included moving closer to the ground in the evening, just
prior to the main activity period of predatory bats, they
usually stayed ca. 10 m above ground [41]. Interestingly,
P. ingens were not found in prey remains at M. hirsuta
roosts even though they are readily captured and con-
sumed by gleaning bats in captivity (33), and birds and
rodents feed heavily upon them in the wild [41]. Little is
known about the natural behavior of Neotropical katy-
dids, hence additional research is needed to determine
the behaviors that represent the greatest risk for exploita-
tion by substrate-gleaning bats.

Another intriguing possibility is that M. hirsuta
might use echolocation to find silent, motionless prey on
surfaces, as has been demonstrated for the congeneric
species M. microtis [27]. In a study investigating the
responses of gleaning bats to katydid calls, M. microtis
also showed the least interest in katydid calls compared
to three other gleaning bat species in Panama [17], possi-
bly because of greater reliance on echolocation for locat-
ing prey. Vegetation varies widely in its reflective
properties [42]. For bats using echolocation cues to
detect silent, motionless prey, the leaves that katydids
perch on at night – either exposed or covered, smooth or
textured, large or small – will vary in their echoacoustic
properties and this likely changes the conspicuousness of
substrate-borne insects to gleaning bats that use echolo-
cation to find prey regardless of whether the prey
actively emits sound. Therefore, habitat use by katydids
is also an important risk factor for avoiding bats that
detect prey on surfaces using echolocation.

A final possibility is that M. hirsuta are more flexible
in foraging than previously believed and facultatively
glean and catch prey in flight. Because a number of bat
species have been shown to use both aerial-hawking and
substrate-gleaning foraging strategies (e.g. Cardioderma
cor [43], Myotis auriculus [44], Nycteris grandis and
N. thebaica [45], Hipposideros ruber [46], Megaderma
lyra [47], R. ferrumequinum and R. hipposideros [48],
M. emarginatus [49], M. evotis [50], M. lucifugus and
M. septentrionalis [51], Rhinolophus blasii, [52], Otonyc-
teris hemprichii [53], Megaderma spasma [54]), this
serves as a reminder to remain cautious about assigning
bats to a single foraging strategy.

Flight cage experiments show that, in captivity,
M. hirsuta can also both glean and catch insects in flight
(33), meaning that not all prey in our study were neces-
sarily captured by substrate-gleaning. A study on
M. spasma in India showed that although these bats
sometimes approached male katydid calling song, they
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always attacked tethered flying katydids [54]. In addition,
the majority of katydid remains in the roosts of
M. spasma were females, suggesting that the generally
accepted idea that signaling males are at greater risk of
predation than females does not hold true for katydids in
this system [54]. Our data support this conclusion for
Neotropical katydids as well. Some katydid species are
known to have a diving response to ultrasound in flight
[55,56], as do crickets [57] and some beetles [58,59]. It is
interesting to note, however, that the majority of katydid
remains in the roosts of M. hirsuta were from species in
the subfamily Pseudophyllinae, which are not strong fliers
(Lang and Römer, pers. obs.). In addition, there were a
number of remains of dragonflies (Odonata), which are
not active at night. Therefore, it is likely that M. hirsuta
is using a variety of strategies to catch prey.

Taken together, our data indicate that the predator–
prey relationship between Neotropical gleaning bats and
katydids is more complicated than previously thought.
Some katydid defenses, such as exceptionally long
spines and calling from dense vegetation, might be suc-
cessful in reducing the probability of being captured by
some Neotropical gleaning bats, whereas others, such as
large mandibles, sporadic calling, or even silence, do not
guarantee safety. In addition, the large number of silent
prey in the diet of M. hirsuta, including a very large pro-
portion of female katydids, means that these bats must
be using a variety of strategies to locate prey. More
research is needed on the interactions and behavior of
these animals to assess the many factors that potentially
contribute to this predator–prey system.
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