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In their recent meta-analysis, White et al. [1] cover a wide range of literature,
drawing on eavesdropping studies that span much of the animal world, to
examine how eavesdropping predators impose selection pressure on sexual sig-
nallers. This is an interesting phenomenon that has received previous attention
but has not been investigated using a quantitative approach [2–4]. We applaud
their extensive investigation into this fascinating literature. We disagree, how-
ever, with the claim that ‘contexts in which sexual signalling may incur no
cost, or even reduce the incidence of predation, are common’. We argue that
in attempting to identify generalities within and across methodological para-
digms and sensory modalities, the methodology used may not sufficiently
account for the complex causal forces underlying the phenomenon at hand.
We find that the increasingly popular meta-analysis, an effective tool to evalu-
ate support for various hypotheses, can miss subtleties of the field and the
biology of the phenomenon investigated. Like any model, it is as good as its
inputs—a rule of thumb that has been previously illustrated in other modelling
contexts [5]. We highlight how, while models can encompass broad biological
diversity, nuances among studies may reveal diverse strategies rather than stat-
istical noise. Eavesdropping of mating signals, in particular, is a behaviour that
occurs across disparate sensory modalities, taxonomic groups and ecological
contexts. A variety of factors, for example, have been identified to modulate
the risk of signallers to attacks by eavesdropping enemies [3,6,7]. In addition,
factors other than signal exploitation can ultimately drive signal evolution
(e.g. [8]). Even though this field is starting to thoroughly understand the com-
plex drivers and consequences of signal exploitation, such as the direct and
indirect effects that eavesdroppers may have on non-signaller parties [9–12],
investigations of eavesdropping on mating signals benefit from considering
the complexity of this phenomenon.

The main claim of the meta-analysis is based on the assumption that eaves-
dropping risk is modality-specific, driven by the physical properties of the
sensory modality of the broadcast signal. While vulnerability to signal exploita-
tion may be expected to vary by signal sensory modality, the underlying
assumption that the active space of a signal is generalizable by its physical
characteristics can be questioned. The generalized predictions presented in
White et al.’s study may be misleading, as the magnitude of eavesdropping
risk is context-dependent and influenced by various factors including signalling
environments, the eavesdropper’s sensory system and prey signalling strategies
(reviewed in [4]). For instance, one prediction in this review is that visual
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signals incur low eavesdropper risk, as they propagate in the
short/medium range. Yet, rather than absolute transmission
distance, signal vulnerability depends on the scale at which
eavesdroppers and signallers interact. Considering the ecol-
ogy of these interactions probably increases their risk factor,
which is also heightened by visual signals being more
accurately localized than signals in many other sensory mod-
alities. In addition to varying in the space over which they
may be detected, visual signals also vary in their temporal
availability to potential exploiters. Some visual signals are
continuously displayed, unceasingly exposing the signaller
to potential eavesdroppers (e.g. [13,14]). By contrast, other
visual signals can be selectively turned ‘off’ and ‘on’ by expos-
ing colour patches (e.g. [15]) or by engaging in specific body
postures and movements (e.g. [16]), modulating the signal-
ler’s risk to eavesdroppers. The nuances of these signalling
strategies within their ecological contexts are thus key to
unlocking their realized costs in the wild.

In an analogous way, the prediction that acoustic signals
always have long ranges is also a broad generalization, as
acknowledged in the study’s discussion. High-frequency
and low-intensity acoustic signals, for example, attenuate
greatly over short distances and are presumably deployed
to avoid detection by eavesdropping enemies [17–21]. More-
over, assessments of the range of signals that ignore the
spatial scale at which animals interact can provide a narrow
view of a signaller’s risk. Even if a signal has a restricted
range, it can still expose the signaller to a large community
of exploiters. Vibrational signals, for example, are detectable
only at very close range and were thus assumed to be safe
from exploitation by eavesdropping enemies [22]. Recent
investigations, however, have shown that the opposite is
true. While substrate-borne vibrations do not transmit far,
they are one of the most taxonomically widespread forms
of communication, as sensory receptors for their detection
are nearly ubiquitous across species [23,24]. Eavesdropper
risk of vibrational signals is thus much higher than histori-
cally assumed [25], and this sensory modality provides an
example of how generalizations focused on signal range
can bias our understanding of signaller vulnerability.

White et al. point out that most studies included in
their meta-analysis overlook the influence of behaviour
by signallers and eavesdroppers. They also caution that
understanding the influence of behaviour on risk from
eavesdropping enemies ‘demands deeper knowledge of the
structure and diversity of sensory environments, signals,
and receivers’ [1]. To their latter point, we fully agree. For
instance, several studies incorporated in the predation risk
analysis used stationary clay models in the wild, a method
with well-known limitations due to the importance of prey
movement to certain predators [26,27]. Indeed, in the meta-
analysis, nine of the 10 studies reporting negative predation
risk on conspicuous visual signals used models. We question
the conclusion that visual signals incur little predation risk
and posit that this interpretation may have been driven by
studies that did not consider the signaller’s behaviours.

While we agree with White et al. that a deeper investi-
gation into the behaviour of signaller and eavesdropper
should be a key goal in eavesdropping studies going forward,
it is worth highlighting that some studies have taken large
steps in that direction. Indeed, many rigorous studies exam-
ining eavesdropping on sexual signals demonstrate the
value of this approach but were not included in this study’s
analysis (e.g. [13,28–34]). We therefore argue that accounting
for and parsing the interactions of multiple causal drivers
(including behaviour) on the magnitude of eavesdropper
risk on sexual signals is critical to moving forward towards
identifying generalities.

More broadly, we challenge the conclusion that in the
wild there commonly is no risk from eavesdroppers. We sus-
pect this result reflects the nature of their dataset rather than a
biological generality. Specifically, their selection criteria
excluded all studies in which comparators received zero
attacks from eavesdropping enemies, reducing their total
number of records by almost half (excluding 101 of 216
total records). These exclusions probably led to an underesti-
mation of the predation risk on signalling individuals.
Similarly, the selection criteria used to include studies may
bias the outcome. One study included in this meta-analysis,
for example, revealed that a conspicuous signal incurred
reduced predation risk compared with cryptic morphs [35].
The conspicuous signal, however, was novel to the predators
on that continent and, therefore, processes such as neophobia
could overshadow the effect of conspicuousness on predation
risk. This experiment thus tested the influence of novelty on
predation risk, not predation risk of an ecologically relevant
signal in the wild. Such effects may thus not represent
reduced overall predation risk. The selection criteria and
assumptions of the meta-analysis may have biased the con-
clusion and further work is necessary to re-examine
whether eavesdropping risk is commonly absent in the wild.

In examining eavesdropping risk, White et al. focused on
studies that address enemies exploiting communication sys-
tems, not including studies reporting anti-eavesdropper
strategies deployed by signallers. When considering current
signal features and signalling displays, evidence suggests
intense past predation pressures have driven the evolution
of a broad variety of signal features and signalling beha-
viours that conceal the signaller (reviewed in [4]). Strategies
that reduce signal detection (e.g. [36–38]), localization (e.g.
[39,40]) and attractiveness (e.g. [41]) are widespread across
taxa and sensory modalities. Eavesdroppers are also fre-
quently associated with curtailing signal ornamentation
(e.g. [6]) and, in extreme but limited cases, driving signal
loss (e.g. [42]) and re-evolution of novel, safer signals (e.g.
[43,44]). White et al. acknowledge eavesdropper-induced
shifts in signalling behaviour are well documented, but
including this evidence in their analysis and interpretations
could inform the conclusions more broadly. Ultimately, the
ubiquitous nature of anti-eavesdropper strategies questions
the claim that contexts in which sexual signalling may incur
no eavesdropper cost are common.

Another aim of the study was to evaluate whether differ-
ences in signal salience modulate eavesdropper risk. This
question is central to the theory of exploitation of sexual signals,
which often assumes that conspicuousness mediates the risk
faced by signallers. The conclusionwas that signal salience, esti-
mated as the degree of signal variation in the manipulations,
does not affect eavesdropper risk. Here, we question the
approach of assigning studies into ‘discrete’ and ‘continuous’
manipulation categories to assess signal salience. Studies
using a control stimulus in which the signal was absent were
categorized as ‘discrete manipulation’, with the signal inter-
preted as being highly conspicuous (as compared with the
control). By contrast, when eavesdroppers were experimentally
exposed to graded variation among the stimuli offered, studies
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were categorized as ‘continuous manipulation’, with signals
interpreted as having lower conspicuousness. While these
methodological paradigms deserve different consideration,
rather than assessing signal salience, these approaches assess
different perceptual and cognitive challenges for the receiver.
When organisms are presented with a single stimulus (discrete
manipulation), we learn about whether this signal evokes (or
not) a response from a potential non-target receiver. Such an
approach thus allows us to examine whether a signal is
detected, recognized and ultimately elicits a given behaviour
(e.g. approach and attack) in the receiver thus confirming that
a given predator, parasite or parasitoid is eavesdropping on
the signal. By contrast, eavesdroppers presented with two
forms of a signal (continuum manipulation) can express a bias
for one variant over the other. These experiments thus provide
a perspective on the relative eavesdropping costs associated
with signals produced in different contexts or by different indi-
viduals. The contrast between the findings of studies using
those two experimental approaches, however, does not address
differences in signal salience. The analysis provided thus does
not directly evaluate the prediction ‘that predation risk should
be heightened among discretely manipulated stimuli owing to
the increased conspicuousness and salience of signallers relative
to controls’. The findings of no differences in risk of exploitation
among manipulations could lead to the conclusion that there is
a lack of support for the assumption that increased signal sal-
ience increases signal exploitation risk. This relationship,
however, is still missing direct examination integrating studies
across species and sensory modalities.

The argument for the lack of evidence of signal saliency
driving eavesdropper risk may also be problematic given
the vague use of the terms ‘conspicuousness’ and ‘saliency’
in the literature [4]. Conspicuousness and saliency are
used as broad concepts that involve differences in signal
detectability, localizability or preference by a receiver
tapping into a variety of perceptual and cognitive processes
that result in increased attractiveness. These terms are also
often used based on signal conspicuousness as perceived
by the researcher or assigned a posteriori based on the out-
come of behavioural experiments. Not accounting for the
sensory ecology of the receiver when identifying signal
conspicuousness can be particularly problematic considering
the diverse perceptual and cognitive systems of target and
non-target receivers in communication networks. Such differ-
ent receivers can perceive and thus respond in divergent
ways to the same signal or signalling display (e.g. [45,46]).
Receiver-specific considerations for each are thus probably
necessary when evaluating signal salience.

We offer a final thought about the implementations of
meta-analyses. We recognize and value the worthwhile enter-
prise of obtaining a general overview of the current
landscape of knowledge in a given field to identify overarching
patterns. The use of this quantitative approach can be a power-
ful tool but may not be appropriate to evaluate all phenomena
[47,48]. In particular, challenges arise when applying meta-
analysis-based generalizations to complex phenomena such
as behaviour. The risk imposed by eavesdropping enemies
on sexual signals, for example, is highly context-dependent,
and shifts with diverse and dynamically changing ecological
factors. Challenges in identifying overarching patterns are not
unique to behavioural ecology; ecological interactions have
long been recognized as notoriously difficult to generalize.
As Lawton [49] pointed out over two decades ago, ‘community
ecology is a mess, with so much contingency that useful gener-
alisations are hard to find’. Concerns about ecological
generalizations including the role of quantitative approaches
[50] and simplification [51] remain as current today as they
were two decades ago. As scientists, we are committed to
searching for patterns and better understanding underlying
commonalities. In pursuit of these worthy goals, however,
care to avoid oversimplification is necessary to prevent us
from inadvertently missing the stunning complexity before us.
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